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Abstract-A hybrid neuro-electronic interface is a cell-cultured
micro electrode array, acting as a neural information
transducer for stimulation and/or recording of neural activity
in the brain or the spinal cord (ventral motor region or dorsal
sensory region). It  consists of an array of micro electrodes on a
planar substrate, the electrodes being covered by a network of
cultured neurons. The cultured neuron network layer acts as a
natural host for in vivo neural connections. Besides this
function, live neural networks can become spontaneously active
and have the capability of information processing, as
‘minibrains’. One may envisage future applications of these
intermediary networks as ‘front-end’ signal processors.
The paper presents results on spatio-temporal activity patterns
and their characterization in neural networks, cultured from
dissociated rat visual cortex. Cultures lasted 43 days in vitro on
multi electrode plates with 60 electrode sites and started
activity after about seven days. Firing rates increase with time
thereafter. Typical ‘pacemaker’-and-burst firing patterns are
seen, the time characteristics of which change over days,
typically.
Keywords – neural interface, cultured neural networks,
network activity

I.INTRODUCTION

Efficient and selective electrical stimulation and recording
of neural activity in peripheral, spinal or central pathways
requires multielectrode arrays at micrometer or nanometer
scale. At present, wire-arrays in brain, flexible linear arrays
in the cochlea and cuff-arrays around nerve trunks are in
experimental and/or clinical use. Two- and three-
dimensional brush-like micro arrays and 'sieves', with
around hundred electrode sites, have been proposed,
fabricated in microtechnology and/or tested in a number of
labs.
As there are no 'blueprints' for the exact positions of
neurons, an insertable multielectrode has to be designed in a
redundant way. Even then, the efficiency of a multielectrode
will be less than 100%, as not every electrode will contact a
neural axon or soma.
Therefore, ‘cultured probe’ devices are being developed, i.e.
cell-cultured planar MEA's (Multi Electrode Arrays). They
may enhance efficiency and selectivity because neural cells
have been grown over and around each electrode site as
electrode-specific local networks. If, after implantation,
collateral sprouts branch from a motor fibre (ventral horn
area) and if they can be guided and contacted to each 'host'
network, a very selective and efficient stimulatory interface
will result (Fig. 1).

CULTURED PROBE

ELECTRONICS

SUBSTRATE

ELECTRODES

CULTURED
NEURON

NETWORKS

AXON
GUIDANCE

COLLATERAL SPROUTS

Fig. 1. Schematic impression of a ‘cultured probe’-type of neural
information transducer/prosthetic device.

Developing neural networks will exhibit spontaneous
activity after about one week in vitro. To study this we have
developed quantitative techniques for long-term,
longitudinal recording of both activity levels and neurite
outgrowth in individual neurons within a developing
network. It has been shown that the patterns resemble those
seen in vivo (see Corner and Ramakers, 1992). Recording of
the firing activity of individual neurons can now be achieved
by culturing neurons on multi-electrode arrays which, since
the pioneering work of Gross and Pine (e.g., Gross, 1979;
Pine, 1980), have become established as a useful technique
(see also Potter, 2000), as is also recently shown by Jimbo et
al. (1999) in a study of activity-dependent plasticity at the
synaptic level. The present paper reports some results of
long-term longitudinal recording of firing activity of
individual neurons during network development.

II.METHODOLOGY

Cell cultures

The cortices of E18 Wistar rat fetuses were removed and
dissociated by trituration following enzymatic treatment
with trypsin. The dissociated neurons were plated on the
multi-electrode array (MEA) substrate coated with
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polyethylene-imine (PEI, Fluka, 10 mg/ml), using glass
rings (inner-diameter = 7 mm). In total 150.000 cells (50 ul
cell suspension) were plated. After 1 hour the rings were
removed and an additional 106 cells in 1 ml of cell
suspension were added to the culture chamber on the MEP
(inner diameter 30 mm). For the inner area this resulted in a
monolayer of cells in such a density that a surface area of on
the average 200 um2 (corresponding to a 16 um circle
diameter) was available for each cell. At time of plating, the
cells themselves had a diameter of about 5 um. Neurons
were cultured and recorded in 2 ml of glia conditioned
medium (GCM) +0.2 % BSA containing 1.3 mM Ca2+ and
0.7 mM Mg2+

The culture chambers were sealed with a glass cover in
order to prevent evaporation of the medium during the long-
term recording period. Once a week, 200 ul of the medium
was sucked out and 300 ul fresh medium added to the
culture, but no further handling was applied during the
entire recording period. After each recording, MEP's were
cleaned by carefully rinsing and sterilized for 4 hrs at 120o C
for reuse.

MEA plates.

The MEA's consist of 5 x 5 cm glass plates onto which a
pattern of 61 electrically conductive lanes were etched,
running from two sides of the plate towards a central area
where they ended in a hexagonal pattern with a mutual
spacing of  70 um and a lane width of 10 um.
MEA's were produced with either transparent indium tin
oxide (ITO: see Gross et al., 1985) or with gold as the
electrically conductive medium (ITO glass plates were
obtained from Philips, Heerlen, The Netherlands).
The MEA's were covered with an insulation layer consisting
of a "sandwich" of silicon oxide, silicon nitride and silicon
oxide layers (ONO, total thickness 800 nm).

The electrode pattern was etched from the indium tin oxide
(ITO) layer using positive photoresist photolithographic
techniques. On glass plates containing a 100 nm thick layer
of ITO, a layer of Microposit S1818 photoresist (Microposit,
Coventry, England) was spun and cured for 20 min at 90 0 C.
The photoresist was illuminated through a mask and
developed with Microposit S1813 (Microposit). Developed
photoresist was etched for 9 min. at 45 0 C with a
HCl/H2O/HNO3, (50:50:1, v/v/v) solution. Subsequently, a
"sandwich" of silicon oxide, silicon nitride and silicon oxide
layers was deposited.
These layers were created by plasma enhanced chemical
vapor deposition (PECVD). The silicon oxide layers were
deposited for 3 min. under gaseous
SiH4, 2% N2 and N2O conditions. The silicon nitride layer
was deposited for 36 min under gaseous SiH4, 2%
N2 and NH3 conditions. Finally, the electrode tips were de-
insulated (diameter 12 um) using reactive ion etching (RIE)
with gaseous SF6 and O2 for 6 min. The electrode tips were

then platinized in order to reduce their impedance to less
than 1 MΩ  (at 1 kHz, Buitenweg et al., 1998).

Multi-electrode recording setup

A culture chamber was created by fixing a glass cylinder
with an inner diameter of 30 mm on the MEP, using a two-
component resin HYSOL or a silicone elastomere, Dow
Corning 3140 RTV coating. MEP's were placed in a closed
incubation chamber, mounted on an inverted microscope
which was kept at a constant temperature of 360.
The sealing impedance between the cell and the electrode, as
well as the impedance of the electrode itself, are important
factors in recording activity from a cell (Regehr et al., 1989;
Buitenweg et al., 1998). The sealing impedance in our setup
was estimated at 5 MΩ  (Buitenweg et al., 1998). During the
experiment, noise levels were routinely measured as RMS
values ; typically noise levels are 20 uV-50 uV RMS.

III.RESULTS

The dynamics of spontaneous activity can be characterized
as follows: 1) activity starts to develop at 9 DIV (fig. 3) 2)
long time recording is feasible (fig. 3), during which 3)
firing rate increases (fig. 4) 4) networks develop clearly a
great variety of patterns of repeated firing activity (fig. 5
shows burst and synchronization phenomena) , implying
that 5) connectivity changes continuously in the network
over time and probably increases overall with time.

Fig. 2. Bright field microscope photo of a random network of rat visual
cortex dissociated cortical neurons on a multi electrode array after 11 days
in vitro. Black dots are platinized electrode (indium tin oxide, ITO) sites,
diameter 12 um. ITO leads to the electrode sites are clearly visible.  For

adhesion of cells the surface is coated by a polyethyleneimine layer.



Fig.4.  Firing rate (no. of spikes/s, summed over all electrodes) as a
function of time (s), between 9 and 43 days in vitro (DIV).

Fig. 5. Specific example of firing activity at two electrodes after 10, 14, 17,
21 and 24 days in vitro, over a time sample 240 seconds long. Action
potentials are time stamped, stored and shown in the figure as events.

Fig. 3. Firing rates in counts per 60 minutes time bins at all 60 individual
sites of the multi-electrode array for the whole period of recording from 9

to 43 DIV. The firing rate traces are individually scaled, with the maximum
hourly rate indicated at the right side of the figure. The figure is composed

of all the recording runs made during the experiment. The plot includes
some non-dashed episodes for which no data was available, caused by

earlier termination of that particular acquisition run. Traces with fewer than
10 spikes per hour at their maximum have been suppressed from plotting in
order  to emphasize the active traces. The traces are plotted from 9 DIV on,

at which time activity was first recorded.
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Fig. 6. Interspike interval distributions , calculated during 4-hours periods
at 15, 21 and 35 days in vitro. Arrows: see text.

Main characteristics of the pattern changes are that typical
gross behavior is stable over one or two days. Typically, one
or two sites show regular firing, like 'pacemaker cells',
interrupted at longer intervals by short (about 1 second)
'collective burst' discharges, during which activity spreads
very fast as ‘bursts’ over many sites. After a burst, activity
may be silent shortly ,  then the pacemakers restart and  after
some time a new, more or less identical activity-burst
develops.  Bursting is defined as sequences of relatively
short intervals.
Network spike clusters include phases of uncorrelated firing
at different electrode sites, and periods of intense
synchronized network activity, characterized by the
recruitment of multiple sites. Such synchronized network
firing may be called ‘network acticvity waves’.
The typical time interval between network spike clusters is
1.3 seconds. Figure 6 shows the interspike interval
distribution , calculated during 4-hours periods at 15, 21 and
35 days in vitro. Each panel shows a small peak at the right
side of the histogram (see arrows) originating from the time
intervals between the main network spike clusters. The
average location of the interval value separating this small
peak from the rest of the histogram is approximately 1.3 sec.
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